All posts by Mateo Neira

About Mateo Neira

Arquitecto y explorador urbano. Interesado en las interacciones, los flujos y las redes de ciudades.

Construyendo un Índice de Movilidad Sustentable

Introducción

La movilidad se ha convertido en uno de los asuntos prioritarios a atender y resolver en la ciudad, las estrategias que se han llevado a cabo hasta el momento, en la mayoría de los casos, no han logrado crear las condiciones óptimas para la población en las áreas urbanas. Cuenca, en términos de movilidad, se define por dos rasgos contrastantes, por un lado la importancia del transporte público, dado que el 43% de la población lo utiliza, y por el otro, el creciente aumento de la motorización y la congestión vehicular, modalidad en la que se invierte un alto porcentaje de los recursos públicos. Para entender mejor el estado actual de la movilidad urbana en Cuenca, LlactaLAB en colaboración con el Plan de Movilidad y Espacios Públicos (PMEP) del GAD Municipal de Cuenca realizó una encuesta de percepción sobre movilidad en toda la ciudad. Esta encuesta proporciona valiosos datos de percepciones y actitudes de los cuencanos sobre la movilidad en la ciudad que pueden guiar futuras intervenciones.

Como parte de este estudio se realizaron algunas preguntas sobre modalidades de transporte y su frecuencia, a partir de estos datos se pudo construir un índice que llamamos índice de movilidad sustentable. El índice mide la movilidad motorizada y no motorizada en las distintas zonas. A diferencia del índice de motorización, que mide la cantidad de autos privados por el número de habitantes, el índice propuesto mide la cantidad de usuarios que utilizan los distintos medios de transporte, su frecuencia y les da un peso de acuerdo al nivel de motorización de cada modalidad y su intensidad de uso. Este índice está compuesto por valores de 1 a 10, valores bajos corresponden a zonas en las que sus habitantes usan principalmente el auto y valores altos a zonas en las sus habitantes principalmente caminan.

Cálculo del índice:

Variables:

indice

Formula:

formula

Resultados:

IMS

En el tema de movilidad, la ciudad de Cuenca comparte (aunque en menor grado) los mismos síntomas de una movilidad deficiente que otras ciudades latinoamericanas, estas deficiencias se traducen en: congestión vehicular producto de la dispersión y de la alta inversión en infraestructura para el automóvil; poca accesibilidad dentro de la ciudad para peatones y ciclistas; contaminación del aire dentro del medio ambiente urbano, entre otros. Sin embargo, como se puede ver en la figura, gran parte de la ciudad tiene un índice de movilidad sustentable medio, esto principalmente por el alto uso del transporte público (que compone el 43% del reparto modal). El Centro Histórico es la zona con el mejor índice de toda la ciudad, puesto que la mayoría de los habitantes señalan que caminan como principal medio de transporte. Existe una agrupación de índices bajos, en la zona del Ejido, Yanuncay, y Monay, en las cuales la modalidad de transporte es principalmente el auto privado. En relación a los datos presentados es necesario hacer nuevas preguntas que den luz a las distintas condicionantes que han dado como resultado la movilidad actual en la ciudad. Esto permitirá entender mejor las causas y permitirán orientar mejor las estrategias e intervenciones urbanas dentro de Cuenca.

Autor: Mateo Neira
Twitter: @mateoneira

El valor de las conexiones: la ciencia de la complejidad para estudiar ciudades.

¿Por qué ciertas ciudades son el escenario principal de creatividad y productividad económica? Según Jane Jacobs (1961), en su libro Muerte y vida de las grandes ciudades, la ciudad es un problema de complejidad organizada, presenta situaciones en las que media docena o varias docenas de variables varían simultáneamente y de forma sutilmente interconectada. Para estudiar las ciudades debemos verlas no solo como lugares en el espacio, sino como sistema de flujos (Batty, 2013), y para entender los flujos debemos entender las redes – la relación entre los objetos. Una red, en su forma más simple, puede ser representada como  un conjunto de puntos (nodos) conectados por líneas (vínculos) (fig. 1). Muchos de los sistemas físicos, biológicos, y sociales pueden ser entendidos  como redes.


fig. 1

Para explicar mejor la importancia de las redes vamos a ver dos ejemplos pequeños. El grafito y el diamante están compuestos únicamente de carbono; lo que diferencia a estos dos materiales es la forma en la que  los átomos de carbono están organizados y enlazados entre sí en el espacio. Esta diferencia en la organización espacial de la red que conforma el grafito y el diamante genera la diferencia que tienen en valor y propiedades. En otro ejemplo, una Chevrolet Captiva del 2015 cuesta aproximadamente 40,000$ dólares en Cuenca, lo que implica un costo de 21$/Kg. El carro es costoso, sin embargo, este carro cómo chatarra no se vendería por nada. El valor de un bien sofisticado, sea una computadora, un carro o una casa, no está dado por los materiales de los que está hecho, sino por las redes que conectan las distintas partes, y en las redes que previamente permitieron que estas partes se unan. El valor se encuentra en los vínculos más que en los nodos (Hidalgo, 2010). Estas redes generan propiedades emergentes de todo tipo. Entonces, si queremos entender cuál es el valor de un sistema y cómo emerge, necesitamos formas de cuantificar la estructura de  las redes. La ciudad no es una excepción, y las ciencias de la complejidad han generado aportes grandes para poder entender estos sistemas (Batty, 2005).

Ya que la ciudad también puede ser vista como un sistema complejo, crear estructuras (económicas, sociales) bien interconectadas podría generar mejores ciudades. Según (Jacobs, 1961) la proximidad y sobretodo las redes de proximidad (complejidad organizada) es la que permite que las personas intercambien bienes, ya sean económicos, sociales o simples ideas y creatividad. Ella decía que la ciudad no es un problema convencional de orden visual ni jerárquico, sino un problema complejo de factores que interactúan para crear un todo interrelacionado. En este sentido, estas interacciones y las estructuras que se forman a partir de ellas son clave para entender la ciudad. Es interesante ver cómo en los últimos años el urbanismo se ha dedicado a desagregar estas estructuras complejas antes que apoyarlas.

Para ilustrar de forma más intuitiva la importancia de estudiar las redes, y de generar redes de proximidad que promuevan el intercambio dentro de la ciudad usaré el caso de Cuenca. El centro histórico de Cuenca (fig. 2), presenta este tipo de redes complejas de conexiones (espacio público y privado, conexiones de movimiento, conexiones visuales, entre otras). Estas conexiones pueden ser moduladas por los usuarios de los espacios (mediante los balcones o diferentes espacios públicos, privados y colectivos). Estás redes están enraizadas en los patrones de conectividad del ámbito público – calles, plazas, y parques – y el privado – casas, departamentos. Los usuarios tienen distintos grados de control sobre estas conexiones, lo que permite que los barrios puedan cambiar su patrón de conectividad desde “abajo hacia arriba”, es decir tienen la capacidad de ‘auto-organizarse’. Esta capacidad de las redes de auto-organización es de extrema importancia (Newman, 2010), pues genera mayor productividad y aumenta los intercambios de bienes e ideas.


fig. 2

En Cuenca podemos ver también el ejemplo de redes de proximidad con escasas conexiones y estructuras rígidas, que han anulado la interacción entre personas y el uso del espacio público (fig. 3). Usaré el caso de la Av. Ordoñez Lazo, en el cual los edificios en altura, el ancho de la avenida, el flujo de automóviles, y la escasez de espacios públicos de calidad han anulado la conexión de los usuarios con el espacio físico de la ciudad. Los usuarios tienen pocas formas de controlar su grado de conectividad, de auto-organizarse: pueden estar únicamente en la privacidad de sus departamentos o en un espacio público reducido. Las oportunidades de relacionarse con otros habitantes de su mismo barrio es baja, reducida a encuentros cortos en los ascensores y vestíbulos de sus edificios y en el espacio de la vereda. Este tipo de redes de conexión, aunque no llegan a ser casos extremos comparados con otras ciudades del mundo,  fragmentan la ciudad.

 


fig. 3
La ciudad está compuesta por redes, sobrepuestas, conectadas y en constante evolución, que se conforman por distintos nodos y eventos a diferentes escalas físicas y temporales. Sin embargo, la configuración de esas redes y su manera de enlazarse, tiene la capacidad de producir espacios muy diversos; unos que tienen alta productividad económica, sustentabilidad y buenas condiciones de cohesión social; y otros  donde las conexiones son pocas, segregadas espacial y socialmente, y con bajos índices de sustentabilidad. En el primer caso podemos hablar de ciudad, en el segundo de urbanización.  Esto es evidente no solo al momento de caminar y experimentar la ciudad, sino en muchas obras literarias y cinematográficas (les recomiendo ver el intro de Manhattan de Woody Allan). Las ciencias de la complejidad se diferencian mucho del resto de las disciplinas, ya que su meta es desarrollar un entendimiento no a través de métodos reduccionistas de análisis, en los que los sistemas naturales se reducen a sus componentes y son analizados de manera independiente, sino estudiar cómo interactúan los componentes de un sistema, generando propiedades y comportamientos emergentes (Hidalgo, 2008).

Autor: Mateo Neira

Bibliografía

Batty, M. (2005). Cities and complexity: Understanding cities through cellular automata, agent-based models, and fractals. Cambridge, MA: The MIT Press.

Batty, M. (2013). The new science of cities. London, England: The MIT Press.

Hidalgo, C. (2008). Thinking outside the cube. Physics World, 34-37.

Hidalgo, C. (2010). The value in the links: Networks and the evolution of organizations.

Jacobs, J. (1961). The death and life of great American cities. New York: Random House.

Newman, M. (2010). Networks: An introduction. New York: Oxford University Press.

 

Nota de Investigación: Las posibilidades de las redes sociales – el hashtag #llactacamp en Twitter

El análisis de redes sociales fue desarrollado de una forma poco técnica por las preocupaciones estructurales del antropólogo Radcliffe-Brown a inicios del siglo XX. Desde la década de 1930 hasta 1970 un número creciente de antropólogos y sociólogos comenzaron a construir sobre el concepto de “estructura social” de Radcliffe-Brown y a utilizar metáforas encaminadas a comprender las relaciones a través de las cuales se organizan las acciones sociales, la metáfora de “red” social pasó a primer plano. Desde principios de 1970 una gran cantidad de trabajo técnico y aplicaciones especializadas empezaron a aparecer, y a partir de estos trabajos surgieron los conceptos claves de análisis de redes sociales.

Actualmente las redes sociales, plataformas que permiten interacción social virtual, como twitter producen una cantidad enorme de datos, estos datos no se encuentran estructurados, pero contienen una serie de metadatos que posibilitan estudiar las distintas propiedades de las redes y abstraer información de ellas. Durante el evento de Llactacamp2.0, realizado entre el 13 al 15 de marzo del 2015, se incentivó que los asistentes, y cualquier otra persona interesada, que interactúe en twitter utilizando el hashtag #llactacamp. Para recolectar estos datos se utilizó la librería de twitter de Python y se realizó una consulta mediante el API de la plataforma. Realizada esta consulta se pudo ver que hubo 166 usuarios hablando sobre ciudad y 973 tweets en total. Es a través de estos datos que se trata de responder las siguientes preguntas utilizando diversas herramientas de análisis de redes y visualización.

  1. ¿De dónde provienen los tweets con mayor influencia del llactacamp?
  2. ¿Cuál fue el tema más compartido dentro de la red?
  3. ¿Cuáles fueron los principales temas de conversación alrededor de llactacamp?
  4. ¿Cuáles fueron esas redes que se formaron?

 

¿De dónde provienen los tweets con mayor influencia del llactacamp?

Para visualizar la influencia de las distintas ubicaciones de donde se realizaron los tweets, se limpiaron los datos geocodificados mediante Open Refine, Luego se aplicó un algoritmo de centralidad del vector propio con NodeXL para medir la influencia de cada persona dentro de la red. La centralidad del vector propio se calcula evaluando qué tan bien conectado un individuo se encuentra a las partes de la red con mayor conectividad. Los individuos con valores altos de vector propio tienen muchas conexiones, y sus conexiones tienen muchas conexiones y así hasta el final de la red. Una vez calculado la centralidad de vector propio para cada usuario se les agrupo a los usuarios por ciudad y se generó la visualización que se muestra a continuación, el tamaño de los círculos está dado por la centralidad de vector propio multiplicado por la cantidad de tweets y los colores únicamente por la centralidad del vector propio. Esto permite visualizar el alcance que tuvieron los tweets mandados desde distintas ciudades del Ecuador, como se puede visualizar los tweets enviados desde Quito tuvieron el mayor alcance he influencia, seguidos por Cuenca (ciudad donde se realizó el evento).

 

Mapa_tweets

 

 

 

 

 

 

 

 

 

Se puede realizar un procedimiento similar para visualizar las personas más influyentes dentro de la red y la cantidad de tweets que estos enviaron. En este caso no importa la ubicación de los tweets, únicamente la centralidad de vector propio de cada usuario y la cantidad de tweets que estos realizaron. En la imagen que se muestra a continuación el tamaño de los círculos está dado por el número de tweets que envió cada usuario y el color por la centralidad del vector propio. Una de las cosas interesantes que se pueden visualizar es que @FundacionAvina, aunque no envió una gran cantidad de tweets sobre #llactacamp, es uno de los usuario con mayor influencia dentro de la red.

Usuarios

 

 

 

 

 

 

 

 

 

 

¿Cuál fue el tema más compartido dentro de la red?

Uno de los metadatos que nos proporciona Twitter es el número de veces que fue retuiteado un tweet específico. Con la aplicación Tableau se generó la visualización que se muestra a continuación, el color y el tamaño de los círculos está dado por el número de retweets de cada tweet. Dentro de los temas que más resaltan, y coinciden con el interés que se mostró durante el evento, es la necesidad de pensar en una ciudad para los niños. El tema que más interés generó fue el convertir a un parqueadero en un parque de bolsillo. A esta actividad se le denominó hackeando la ciudad.

 

tweets

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¿Cuáles eran los principales temas de conversación alrededor de llactacamp?

Para visualizar los principales temas de conversación alrededor de #llactacamp se creó un wordcloud con el paquete “wordcloud” dentro del lenguaje de programación R. El tamaño de las letras corresponde a la frecuencia que aparecen dentro de la totalidad de tweets generados con el hashtag #llactacamp. La visualización solo muestra la frecuencia de palabras individuales, para una mejor aproximación a los distintos temas puede ser interesante generar la frecuencia de pares de palabras con el fin de tener una mejor contextualización.

 

word_cloud

 

 

 

 

 

 

 

 

 

 

¿Cuáles fueron esas redes que se formaron?

Mediante Gephi, se realizó una visualización para poder ver los subgrupos dentro de la red. Para esto se utilizó el algoritmo de clasificación por modularidad. La modularidad es una medida de la estructura de las redes, este algoritmo busca los nodos que están más densamente conectados entre sí comparados al resto de la red (para una explicación más detallada pueden leer el paper llamado “Fast unfolding of communities in large networks”, publicado por el creador del algoritmo). Los colores representan distintos subgrupos, y las líneas las conexiones existentes entre los distintos usuarios. Usando este tipo de análisis se puede observar como, por ejemplo, @FundacionAVINA actúa como conector a un nuevo grupo de personas que no estaban originalmente conectadas a la red, comprendidas por empresas y personas más vinculadas con temas sociales.

red

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¿Qué pasa cuando aplicamos este tipo de análisis a la ciudad?

Estas formas de analizar redes sociales pueden ser aplicadas a una escala mucha más grande, lo que permite visualizar los distintos grupos o subgrupos dentro de toda una ciudad, y entender como estos interactúa entre sí. Existen investigaciones interesantes que muestran este potencian, por ejemplo:

https://www.youtube.com/watch?v=PhVP1tNeGyY&feature=youtu.be

Autor: Mateo Neira